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Abstract 

In the recent past, optical satellite data have been widely used in estimating forest parameters, 
particularly above-ground biomass (AGB) and carbon (C) stocks, but were not used much in Papua 
New Guinea (PNG) forest studies. In this study, forest inventories conducted in 2009 and 2014 for 
ground estimation of AGB and C were linked with bi-temporal high resolution (5m) optical 
RapidEye satellite data for 2010 and 2014respectively for estimation at spatial levels using an 
improved strategy in a low-altitude tropical landscape of PNG. In order to improve the overall 
estimation process, specific spectral indices were derived from the Red band of the RapidEye data 
along with explorative derivation of such using the Red Edge narrow-bandto act as added variables 
for correlation with AGB and C. Variable appropriation for the modeling found significance in the 
Red Edge derived spectral indices over those derived normally from the Red band. Using these 
spectral parameters, single preeminent variables were identified and utilized to model AGB and C 
in each forest stratum via a spatial linear regression analysis. This study presents the idea of 
generating stratum-specific models using RapidEye imageries and merging these models through 
the notion of model-fitting for effective cross-landscape estimation of C stocks. The two broad 
forest stratums analysed were undisturbed primary forest (PF) and disturbed secondary forest (SF). 
Stratum-specific models developed for PF and SF using spectral indices had high confidence levels 
of p< 0.01 for both PF and SF in 2010 and also sound confidence levels of p< 0.05 for both PF and 
SF in 2014. The overall root mean square errors (RMSEs) for both temporal models were 
reasonably low with values <9MgC ha-1 and <29MgC ha-1 across the study area. RMSEs for the 
model-fitswere attuned and more promising with values < 7MgC ha-1 and < 18MgC ha-

1respectively.These results show that the strategy of stratum-specific modeling used here is an 
effective approach that can be well applied in other low-altitude tropical forest landscapes in PNG 
with high resolution optical satellite data for efficient C stock estimations for REDD+ 
implementations. 
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1. Introduction 

According to the JICA (Japan International Corporation Agency) – PNGFA (Papua New Guinea 
Forest Authority) Project for Capacity Development on Forest Monitoring for Addressing Climate 
Change(The National, 2014, March 13), AGB and C dynamics monitoring at vast scales are currently 
analysed using high resolution RapidEye satellite data as an improved optical remote sensing product 
together with active microwave remotely sensed Radar (Phased Array type L-band Synthetic Aperture 
Radar onboard Advanced Land Observation Satellite – ALOS PALSAR) (Rosenqvist et al., 2007) data 
across PNG. These remote sensing data are also being used solely to map and monitor PNG forests. 
Thus, since RapidEye data is currently used by the Papua New Guinea Forest Research Institute 
(PNGFRI) under the PNGFA to map and monitor forest parameters at a national level, its usage in this 
study is relevant. The UNREDD/REDD+ (UNFCCC, 2009 & 2010) are currently focused on forests in 
the tropics (Bryan et al., 2011) and because PNG has the largest tropical rainforest in the South Pacific 
region (Sharman et al., 2008), the estimation of sequestered (stored) C stocks via improved strategies 
of space-borne (satellite) approaches are the effective means needed for large-scale carbon estimation. 

Regarding space-borne approaches, Wijayaet al. (2010a) used certain specific spectral indices such as 
complex vegetation indices with simple ratio indices derived from medium resolution optical Landsat 
7 ETM+ (Enhanced Thematic Mapper Plus) satellite data to analyse relationships with AGB and C in 
tropical Indonesian forests and found that complex Global Environment Monitoring Index 
(GEMI)(Pinty and Vestraete, 1991) was a preeminent variable in their AGB and C estimation model. 
Eckert (2012) also explored the relationship of specific spectral indices involving complex vegetation 
indices and simple ratio indices from high resolution optical WorldView-2 satellite data with AGB and 
C and found model significance in complex Enhanced Vegetation Index (EVI) (Huete et al., 1997). 
Accordingly, such specific spectral indices were used in this study to analyse relationships with AGB 
and C for their subsequent modeling and estimation.Linear regression approaches have been widely 
applied for prediction of AGB and C using spectral parameters from optical remote sensing data 
(Eckert, 2012; Hall et al., 2006; Rahman et al., 2008; Wijaya et al., 2010a & b; Zhenget al., 2004) and 
were also applied in the present study to develop estimation models for AGB and C. The initial study 
done (Yali and Samanta, 2014) was, however, only limited to the relationships between simple spectral 
reflectance (single image bands) from Landsat 7 ETM+ data with AGB and C for the estimation at 
spatial levels in a lowland forest. 

The aim of this study is to integrate ground estimates of AGB and C with spectral parameters of the 
RapidEye imageries to analyse their relationship and the potential of RapidEye data to improve 
estimation of AGB and C for two tropical forest stratums on a bi-temporal platform. The study 
objectives, therefore, are (i) to derive appropriate variables for AGB and C modeling, (ii) to develop 
stratum-specific models for improved estimation of AGB and C and via model-fitting, demonstrate 
spatially distributed estimates of C. Notably, the overall estimation process in this study from ground 
estimates to correlation and finally to modeling will refer to both AGB and C hereafter despite the  
focus on C stocks because forest biophysical features observable by satellite sensors are directly 
related to AGB and C is only a vital sequestered constituent of AGB. 

Conjecture-wise this study hypothesizes that explorative derivation of the spectral indices from the 
RapidEye’s Red Edge narrow-band will assume significance in their correlation with AGB and C. 
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Also, since this study uses bi-temporal RapidEye data to develop stratum-specific models (Eckert, 
2012) it hypothesizes the idea of model-fitting as a good strategy for validating the integration of these 
models in the spatial domain for temporal cross-landscape estimation. 

 

2. Study Area 

The study area is situated in the western part of the central region of Wampar Local Level 
Government(LLG) in the Huon District of Morobe Province, PNG. It lies approximately 8 km 
precisely northwest of Lae City and shares a common boundary with Lae Urban LLG (see Figure 1).Its 
geographical extent from north to south is 146° 50’ 24” E, 6° 31’ 12” S to 146° 50’ 24” E, 6° 44’ 24” S 
and its entire extent was defined according to the scene extent of the acquired RapidEye imageries. 
The study area has a total annual precipitation of 2336 millimetres (mm) and falls within a regional 
annual temperature range of 22 to 34°C.It also has major forest areas in the north-eastern and south-
western parts where there is high elevation. Elevation peaks range from 150 to 1000m above sea 
level.The study area also contains the junction of the two major highways in Morobe Province and 
according to Figure 1 the highway extending north-west to west is the Highlands (Okuk) Highway, 
while the other extending west to south-west is the Bulolo Highway. Figure 1 also shows the location 
of the study area and gives a historical depiction of the forest cover for Year 2000 captured by 
Landsat7 ETM+ sensor and measured in percentage (%). 
 
The study area has the most sensitive forest in the whole of Wampar LLG as it is highly subjected to 
mainly agricultural land-uses with substantial forestry activities as well as infrastructure development 
and other urban development (settlements). The primary vegetation of the study area typically ranges 
from low-altitude forest on uplands, to low-altitude forest on plains and fans and low-altitude 
woodland with other less dominant but important lowland forest stratums.  

The most dominant tree species identified by the 2009 forest inventory was Pterocarpusindicus 
(Rosewood) with Celtis (Celtis) and Pometiapinnata (Taun) as the other two common species. In the 
2014 forest inventory the dominant species was Ficus (Fig) withCeltis (Celtis), Syzygium (Water 
Gum), Myristica (Nutmeg) and Cryptocarya (Cryptocarya) identified as other common species by 
count. Most but not all species identified in both of the forest inventories were listed as the 50 most 
common species on the PNGFRI’s Permanent Sample Plots (PSP) (Fox et al., 2010).  

The two broad forest stratums evaluated for the estimation ofC stocks across the study area were (i) 
primary forests (PF) consisting of undisturbed forests with mature growths (Fox et al., 2010) and (ii) 
secondary forests(SF) comprising disturbed forests (Brown & Lugo, 1990) including Riparian (open) 
forests (Wijaya et al., 2010). 
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Fig 1. Location map of the study area, a low-altitude landscape portion of central Wampar LLG 
referencing Morobe Province and PNG and also showing Yalu and Oomsis sample sites 

3. Materials and Methods 

3.1 Field Data 

Field estimation of AGB and C stocks for the entire study area involved data collected from two 
dates, 2009 and 2014. For location of sample plots, two sites were sampled in Yalu and Gabensis 
respectively in 2009 (Yosi, 2011) whereas in 2014 two sites were sampled in Omsis with one site in 
Yalu. In Yalu forest, 2009 plots were located on the west of the Highlands Highway while 2014 
plots were located on the Atzera Range lying adjacent to the Highlands Highway on the east (see 
Figure 1). For Oomsis, sample plots were located on the uplands of Oomsis hills with only three 
plots from those located at the east of Bulolo Highway situated on a subtle low lying plain between 
the uplands.  

The forest sampling method used wasVariable Radius Sampling Technique (Fox et al., 2011a), a 
modern forest inventory technique also known as point samples or plot-less samples which was 
introduced to PNGFA by Australian Centre for International Agricultural Research (ACIAR) in 
2003 for application in forest inventories and was also applied in Yosi (2011). Forest in-situ data 
were collected from 18 sample plots for 2009 and14 sample plots for 2014totalling 32 samples for 
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retrieval of AGB parameters especially diameter at breast-height (DBH).For definition of sample 
trees a “Wedge” or “Basal Area” Prism radarscope was used to identify unbiased samples within 
each plot in a clock-wise direction from the plot centres. A hand-held GPS was used to capture the 
centre location of each plot and plot radius ranged from 10 to 15 meters. Only DBH was measured 
using π-calibrated diameter tapes for trees that were identified as samples by the Wedge Prism. The 
measurements comprised trees with diameters >10cm, having matured stand structures.In order to 
estimate tree heights for each sample tree, a height-diameter (H-D) model developed earlier in a 
collaborative research by the ACIAR and PNGFRI (Fox et al., 2010; Fox et al., 2011a; Fox et al., 
2011b) was applied. The equation applied to estimate tree heights is as follows: 
 

H = aD ÷ b + D 

where, H is the tree height, a and b are parameters estimated from H-D models in PNGFRI’s PSPs 
and D is the diameter (DBH).  

AGB and C for sample plots were estimated using Chaveet al.’s (2005) biomass model, a wet 
tropical allometry developed from an extensive study of tropical forests including those in PNG and 
was successfully applied in Fox et al. (2010 & 2011a) and Yosi (2011) for PNG low-altitude forests 
and Yali & Samanta (2014) in a lowland forest landscape. This model takes the form: 

AGLB = 0.776 [ρD2H] 0.940 

whereAGLB is aboveground live biomass in kilograms (kg), ρ is wood specific gravity (density at 
0% moisture) in grams per cubic centimetres (g/cm3),D is tree diameter (DBH) in centimetres (cm) 
and H is total tree height in meters (m) (Fox et al., 2010 and Fox et al., 2011). For the estimation of 
AGLB in this study, the wood density for each tree was obtained from three sources: (i) available 
wood densities for PNG timber species in Eddowes (1997); (ii) wood densities from compiled work 
on Asian rainforest by Intergovernmental Panel on Climate Change (IPCC) (2006) and (iii) an 
overall average wood density value of 0.477g/cm³ across all PNG tree species in PNGFRI’s PSPs 
(Brown, 1997; Chave et al. 2003). The C measure of the forest as specified in Fox et al. (2010 & 
2011a) is 50% of the dry (0% moisture) biomass (Clark et al., 2001; Houghton et al., 2001; Malhi 
et al., 2004). After estimating C from AGLB using biomass model by Chave et al., it was measured 
in mega-grams per hectare (Mg ha-1). 

Table 1. Overall mean estimates of C stocks for the study area measured in Mg ha-1 with 
Standard Deviations (SD) in parenthesis 

AGB Component for 2009 
estimates 

Yalu lowland Forest 
(both PF and SF) 

Gabensis lowland Forest 
(mostly PF) 

AGLBDBH>10cm 

Est._ AGLBDBH<10cm 

110.19 (27.58) 
11.02 

119.21 (37.19) 
11.92 

Total AGLB 
Sample Size (n=18) 

121.21(70.12) 
16 

131.13(75.87) 
2 

AGB Component for 2014 
estimates 

Oomsis upland Forest 
(mostly SF) 

Yalu upland Forest 
(both PF and SF) 

AGLBDBH>10cm 84.2 (17.43) 126.06 (77.35) 
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Est._AGLBDBH<10cm 8.42 12.61 
Total AGLB 

Sample Size (n=14) 
92.62(53.58) 

6 
138.67(80.22) 

8 
PF: Primary Forest; SF: Secondary Forest (Note: AGLBDBH>10cm was the primary measurement 
thusEst._AGLBDBH<10cm denotes that AGLBDBH<10cm was estimated. 

 
Table 1 shows the overall mean estimates of C stocks for the two major AGB components (Gibset et 
al., 2007) in each temporal ground estimates over the sampled sites of the study area measured in Mg 
ha-1with standard deviations of the measured component (i.e. AGLBDBH>10cm) and the total AGLB in 
parenthesis (Yosi, 2011). This study limited the estimation of C stocks solely on the AGLB component 
of the AGB excluding the NLB (non-living biomass) component which comprises fine litter (FL) and 
coarse woody debris (CWD) (Fox et al., 2010; Yosi, 2011)that accumulates on forest floors.From 
Table 1 the C measure of AGLBDBH<10cm was estimated with a compromised factor of 10% of 
AGLBDBH>10cm for both 2009 and 2014 estimates according to the proportionality of PF and SF by each 
temporal estimate. These factors for AGLBDBH<10cm estimation were derived from Fox et al. (2010).C 
estimates of total AGLB given here are comparable to those given in Fox et al. (2010& 2011a). 
However, this study predicated the average measure on the coupling of both stratums (PF & SF). 
The entire ground estimate was divided into training dataset and validation dataset in which all 
sampled data from the sample sites presented in Table 1 were used as the training dataset and only the 
sample data from Gabensis (n=2) (Yosi, 2011) were withheld as the validation dataset. In addition to 
the validation dataset, sample data from two 1 ha PSPs in Yalu having 6 samples each were included. 

3.2 Satellite Data Preprocessing and Collateral Data 

Two Optical RapidEye satellite imageries for 2010 and 2014 were obtained and used in this study. 
These two RapidEye imageries are 5-band multi-spectral (Blue, Green, Red, Red Edge and NIR-Near 
infrared) image data acquired at a spatial resolution (pixel accuracy) of 5 meters and orthorectified at 
processing level 3A. Geo-referencing was done at an accuracy of 12.7m(CE90) on a map scale of 
1:25,000. The projection system used was Universal Transverse Mercator (UTM), Zone 55 South on 
World Grid System 1984 (WGS84) Datum in metric units. 
Final preprocessing included atmospheric correction for reduction of haze and also other influences of 
atmospheric and solar illumination (Eckert, 2012).Prior to the final preprocessing, the RapidEye 
imageries were subsetted using a vector mask to delineate the boundary of Wampar LLG producing 
the cropped scene of the study area. Finally, in their given order above, the RapidEye imageries were 
integrated with the 2009 and 2014 ground estimates (of AGB and C) respectively to produce spatially 
distributed estimations for the low-altitude forest landscape studied. 
A forest-base land cover/use map for 2012 was derived from the combination of opticalRapidEye 
imageries and Radar (ALOS – PALSAR) satellite data with existing forest-base data under the JICA – 
PNGFA Project, which was initiated in 2011 (The National, 2014, March 13). This Forest-base Map 
comprised all identified forest stratums by the PNGFRI with other momentousagriculture and forestry 
land-uses and was produced at national and provincial levels. The subset for the study area (Figure 2) 
was retrieved from the provincial level Forest-base Map and is presented at a map scale of 1:150,000 
showing terrain of hill-shading derived from a 30m Digital Elevation Model (DEM). Current active 
forestry activity or land-use within the study area illustrated in Figure 2is the Morobe Concession area 
coded as a forest mapping unit 1201 (Mor_con_1201_FMU) and the Oomsis Pine Plantation. This 
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Forest-base Map for the study area was the collateral data used to evaluate the two broad forest 
stratums studied. 

 
Fig 2. Forest-base map for the study area generated from Morobe Forest-base Map 2012 

3.3 Spectral Vegetation Indices, Image Transforms and Simple Reflectance 

Following the preprocessing of the RapidEye satellite data, a number of specific spectral indices were 
generated from image spectral bands by either vegetation index or simple ratio index. Simple band 
rationing involved single bands in each ratio component whereas vegetation indices utilised multiple 
bands being inputted in each of the ratio components (see Table 2) and were categorised into 
traditional and complex (Wijaya et al., 2010a). Since the Rapid Eye imageries consist of a narrow-
band, that is, the Red Edge Band, all spectral indices generated using the Red Band were also 
generated using the Red Edge Band. Red Edge-derived spectral indices acted as an added set of 
variables to the overall estimation process. Moreover, unlike previous studies in which narrow-band 
(Red Edge) indices were limited to traditional Normalised Differential Vegetation Index (NDVI) and 
Ratio Vegetation Index (RVI) with certain specificity (Sims et al., 2002; Datt, 1999), this study 
presents an exploratory trend of generating all possible indices from the Red Edge narrow-band that 
are normally generated using the Red Band specifically to test for significance in correlation with AGB 
and C. Detailed descriptions on the utility of and further information about the spectral vegetation 
indices used here can be found in the respective sources cited (Table 2). Apart from spectral indices, 
the spectral image transforms of Principal Component Analysis (PCA) was conducted to extract 
components according to the number of RapidEye bands. Additionally, single spectral bands of the 
RapidEye imageries were also extracted and Table 2 shows a list of all the spectral parameters tested. 
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Table 2. Various spectral parameters such as single image bands, image transforms, simple band ratio 
indices, traditional vegetation indices and complex vegetation indices generated and tested for variable 

appropriation for the AGB and C modelling. 

Spectral parameter Formula Reference 
Single image bands 
(RapidEyebands 1 – 5) 

  

Simple Band Ratio: 
RVI (RVI_re) 
NIR/Green 
GRVI (GRVI_re) 

 
NIR/Red 

NIR/Green 
Green/Red 

 
(Jordan, 1969) 
(Eckert, 2012) 
(Kanemasu, 1974) 

Image Transform 
(PCA1-PCA5) 

  
(Wijayaet al., 2010a&b and 
Eckert, 2012) 

Traditional Vegetation Index: 
NDVI (NDVI_re) 
ND32 (ND42_re) 

 
(NIR–Red)/(NIR + Red)  

(Red – Green)/(Red + Green) 

 
(Rouse et al., 1973) 

Complex Vegetation Index: 

EVI (EVI_re) 

SAVI (SAVI_re) 

MSAVI (MSAVI_re) 

GEMI (GEMI_re) 

 

2.5 × (NIR –Red)/(NIR – 6Red– 7.5Blue + 1) 

(NIR− RED)× (1 + L)/(NIR+ RED+ L) 

 

ԑ(1 – 0.25ԑ) – (Red – 0.125)/(1 – Red) 

where ԑ = (2(NIR2–
Red2)+1.5NIR+0.5Red)/(NIR+Red+0.5) 

 

(Hueteet al., 1997) 

(Huete, 1988) 

(Qi et al., 1994a&b) 

(Pinty and Vestraete, 1991) 

GRVI: green ratio vegetation index; ND32; NDVI using the 3rd band (red) and the 2nd band (green); 
EVI: Enhanced Vegetation Index; SAVI: soil-adjusted vegetation index, L= 0.5; MSAVI: attuned 
modified soil-adjusted vegetation index; GEMI: Global Environmental Vegetation Index(Note: for 
every “_re” specified index for example, “NDVI_re” denotes that a Red Edge index was calculated for 
the particular type of index simply by substituting every Red band input with Red Edge Band. Also, 
ND42_re denotes NDVI using the 4th band (Red Edge) with the 2nd band). 

 

3.4 Statistical Analysis 

Training datasets for 2009 ground estimates were 16 plots while those for 2014 were 14 plots. These 
training datasets were used to extract pixel values from the generated spectral parameters using on-
ground plot locations. To analyse the relationships of AGB and C with values extracted from the 
spectral parameters, Pearson’s Correlation was used to correlate AGB and C with each of these 
spectral parameters to determine appropriate predictor variables for modeling and estimation. Only 
highly correlated spectral parameters were selected as preeminent predictor variables and were used in 
a Geographic Information System(GIS) environment to conduct a Spatial Ordinary Least Square 
(OLS) Regression Analysis (Longley et al., 2005) to generate estimation models for C stocks. The 
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spatial linear OLS regression was performed in a step-wise approach (Eckert, 2012; Wijaya et al., 
2010a). Stratum-specific modeling was conducted in which the training datasets from each ground 
estimate plotted on each corresponding temporal image data (i.e. 2009 estimates on 2010 image and 
2014 estimates on 2014 image) were divided into PF and SF identifiably for each temporal estimate 
and modeled correspondingly. Since stratum-specific samples were rather small, individual models 
were developed for only single preeminent predictor variables and a combination through model-fitting 
was done to produce an overall estimation trend for each temporal estimate. The coefficient of 
determinant R2, its reliable counterpart adjusted R2 and model probability(p-level) were the relevant 
statistical parameters used to assess model performance and model-fits in each forest stratum. Robust 
spatial statistical probabilities namely, Joint F-Statistic and Joint Wald Statistic were also taken into 
account to primarily assess overall model significance while Jarque-Bera statistic primarily assessed 
model bias. Finally, Spatial Autocorrelation (Moran’s Index) (Longley et al., 2005) was used to assess 
residual spatial autocorrelation on each OLS regression model to ensure that their residuals were 
randomly distributed. 
Plot-level model validation was done utilising the withheld validation dataset with model-fitted 
preeminent predictor variables calculating their resultant root mean square error (RMSE) and variance 
ratio (VR) (Muukkonen and Heiskanen, 2006; Powel et al., 2010; Wijaya et al., 2010b).VR and RMSE 
with the relative counterpart of the latter which is RMSEr (Muukkonen andHeiskanen, 2006;Wijayaet 
al., 2010b)were directly applied to individual models for PF and SF and their subsequent model-fits as 
secondary measures to assess model performance and significance. 
 

4. Results and Discussions 

4.1Correlation of Spectral parameters with AGB and C  

Pearson’s correlation identified highly correlated variables (spectral parameters) with AGB and C prior 
tomodeling; thus, for PF and SF in 2010spectral imageries, the preeminent single index variables 
identified were NDVI with R2 = 0.808 (p = 0.006) and GRVI with R2 = 0.669 (p = 0.007) respectively. 
For the 2014 spectral imageries, the preeminent index variables identified were GRVI_re withR2 = 
0.817 (p = 0.011)for PF and RVI_re withR2 = 0.52 (p = 0.043) for SF. Since the level of correlation 
was quite high, only high correlations of Pearson’s Coefficient ‘r’ = > 0.7 with associated 
linearR2andsignificant p-levels are listed in Table 3. 

Table 3. Tested spectral variables and stratum-specific preeminent single variables (bolded) listed 
with statistically significant Pearson’s correlation coefficients r, p-levels and linearR2for linear 

relationships with AGB and C 
Stratum Spectral parameter Pearson’s r R2 

PF_RE_2010 (n=7) 
 
 
 
 
 
 
 
 
 

NIR Band 
NIR/Green 
RVI 
GRVI_re 
NDVI 
ND42_re 
PCA1 
PCA2 
EVI 
EVI_re 

0.728 
0.862(*) 
0.883(**) 
-0.872(*) 
0.899(**) 
0.871(*) 
0.806(*) 
-0.896(**) 
-0.896(**) 
-0.881(**) 

0.529 
0.743 
0.780 
0.760 
0.808 
0.757 
0.649 
0.802 
0.803 
0.776 
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SF_RE_2010 (n=9) 
 
 
 
 
 
 
2009 Field data (total n=16) 

SAVI 
MSAVI 
GEMI 
GEMI_re 
RVI 
GRVI 
EVI 
EVI_re 
SAVI 
MSAVI 
GEMI_re 

0.887(**) 
0.886(**) 
-0.880(**) 
-0.890(**) 
0.756(*) 
0.818(**) 
-0.741(*) 
-0.719(*) 
0.740(*) 
0.734(*) 
-0.701(*) 

0.786 
0.784 
0.774 
0.792 
0.572 
0.669 
0.549 
0.517 
0.699 
0.539 
0.491 

PF_RE_2014 (n=6) 
 
 
SF_RE_2014 (n=8) 
 
2014 Field data (total n=14) 

NIR/Green 
GRVI_re 
PCA5 
RVI_re 
MSAVI_re 

-0.760(*) 
0.904(*) 
0.702 
0.721(*) 
0.709(*) 

0.577 
0.817 
0.493 
0.520 
0.503 

 
Code example - PF_RE_: PF on RapidEye temporal image;(**) significant correlation at 0.01 
level and (*) significant correlation at 0.05 level. 
 

Most of the statistically significant spectral parameters for PF_RE_2010 were at a p-level of<0.01 
including the preeminent variable NDVI while the single spectral band NIR had a good correlation (R2 
= 0.529) but a very poor p-value of 5.661. SF_RE_2014 had only the preeminent variable GRVI with 
statistical significance at p-level< 0.01. All parameters for both stratums in the 2014 image including 
their respective preeminent variables had p-levels < 0.05 while only PCA5 under PF_RE_2014 had an 
insignificant p-value of 0.446 although it had a substantially good correlation. 

 

4.2 Spatial Ordinary Least Square (OLS) Regression Analysis 

Spatial Ordinary Least Square (OLS) Regression Models were developed on a stratum-specific basis 
where AGB/C was the dependent variable and a single preeminent spectral parameter was used as the 
predictor variable. As assumed, the selected preeminent spectral parameters produced spatially and 
statistically significant models given in Table 4 with certain relevant spatial statistical parameters. 
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Table 4. Relevant statistics for the developed stratum-specific models for 2010 and 2014 with 
their model-fits 

Model stratum R2 Adj. 
R2 

VR RMSE 
(AGB) 

[Mg ha-1] 

RMSE 
(C) 

[Mg ha-1] 

RMSEr 
(C) 
[%] 

Joint F-
Statistic 
(p-value) 

Joint Wald 
Statistic 
(p-value) 

PF10_NDVI  
(n = 7) 

SF10_GRVI  
(n = 9) 

0.808 
 

0.669 

0.770 
 

0.622 

0.899 
 

0.818 

8.544 
 

16.040 

4.272 
 

8.020 

3.077 
 

8.894 

0.005909 
 

0.007058 

0.000000 
 

0.000429 

Model-fit (n = 
16) PF&SF_10 

0.739 0.696 0.969 13.290 6.646 5.963   

PF14_GRVI_re 
(n = 6) 

SF14_RVI_re 
(n = 8) 

0.817 
 

0.520 

0.772 
 

0.440 

0.904 
 

0.721 

56.624 
 

18.010 

28.312 
 

9.005 

21.132 
 

11.292 

0.013365 
 

0.043406 

0.000001 
 

0.000952 

Model-fit (n = 
14) PF&SF_14 

0.669 0.606 0.925 34.982 17.491 16.984   

Code example, (a) PF10_NDVI: 2010 PF model using preeminent variable NDVI; (b) 
PF&SF_14: combined model-fit for 2014. 
 
 

The models developed for 2010 PF and SF had more satisfying spatial statistical 
probabilities(Joint F-statistic & Joint Wald Statistic) at p-levels< 0.01 and< 0.001 (Table 4) 
respectively in which a relevant p-value of Joint F-statistic assumes an overall model 
significance while a relevant p-value of Joint Wald Statistic indicates robust overall model 
significance. Concerning the model complexities, the 2010 models showed significant measures 
of adjusted R2that explained 77% of the variation of AGB and C in PF and 62.2% of the 
variation of AGB and C in SF. Consequently, the PF model achieved a C relative RMSE of 
3.08% corresponding to a RMSE of 4.27MgCha-1and 8.54MgAGBha-1while the SF model 
achieved a C relative RMSE of 8.89% with corresponding RMSE of 8.02MgCha-1and 
16.04MgAGBha-1. Model-fitting of these two models for 2010 achieved a combined mean 
adjusted R2 attuned to a value of 0.696. The attuned C relative RMSE for the model-fit 
was5.96% with a corresponding RMSE of 6.65MgCha-1and 13.29MgAGBha-1 showing a good 
adjustment to fit both models. For 2014, the Joint F-statistic and Joint Wald Statistic were 
significant at p-levels < 0.05 and < 0.001 respectively for both PF and SF. The PF model for 
2014 had a significant adjusted R2 that explained 77.2% of variation in AGB and C (similar to 
2010 PF model),whereas the SF model had also a considerably significant adjusted R2 explaining 
44% of AGB and C variation. Having quite a high corresponding RMSE of 28.31MgCha-1and 
56.62MgAGBha-1, the C relative RMSE for the 2014 PF model was 21.13% while the SF model 
had a C relative RMSE of 11.29% with corresponding RMSE of 9MgCha-1and 18MgAGBha-1. 
Combining these two 2014 models in a model-fit, the adjusted R2was attuned by averaging to 
0.606 with also an attuned C relative RMSE of 16.98% corresponding to a RMSE of 
17.49MgCha-1and 34.982MgAGBha-1 that also suites the fit of both models. 
 
Figure 3 shows the relationship between measured and estimated C stocks for the stratum-
specific models for 2010 and 2014 plotted in a model-fit. It also shows the spatially distributed 
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temporal C stock maps (being measured according to modeled estimates) of a scene where Yalu 
plots are located (refer to Figure 1). Obviously, the model-fits show the entire sample plots for 
each year graphically through combining the stratum-specific models. It is impressing to note 
that stratum-specific models for 2010 were both at 99% confidence interval (p< 0.01) while 
those for 2014 were also both significant at 95% confidence interval (p< 0.05). Regarding 
overestimation and underestimation, the overall highest and lowest measured C in 2009 (for 
2010 image) were 152.828Mg ha-1 and 77.405Mg ha-1 respectively and interestingly the highest 
measured C was not much underestimated given an estimate of 152.228Mg ha-1 with similar 
reduced overestimation of the lowest measured C to 78.693Mg ha-1. The overall highest and 
lowest measured C in 2014 (for 2014 image) were 281.369Mg ha-1 and 52.147Mg ha-1 
respectively and were underestimated to 250.178Mg ha-1 and overestimated to 71.365Mg ha-1 in 
that order. 

 

Fig 3. Model-fits for the developed PF and SF models for 2010 (a) and 2014 (b) with subsequent 
spatially distributed scene-level C stock maps 
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4.3 Discussion 

The high spatial resolution (5m) of the RapidEye imageries provided a robust capture of the 
forest,which was advantageous for linking of ground estimates of AGB and C. Forest inventories 
in this study were designed to cover the major stratums across the low-altitude landscape of the 
study area taking samples in both lowlands and uplands. As ground-truthing, forest inventories 
proved the different levels of forest disturbance (land-cover/use) depicted by the Forest-base 
Map in Figure 2and how these disturbances affected AGB and C estimates at plot levels and 
even spatial levels. These disturbances comprised the different types of land-use activities that 
affected the C content of the study area. The Forest-base Map also provided a standard 
classification of forest stratums that aided in defining the two broad stratums analysed in this 
study and also provided an insight on how C is spatially distributed among these forest stratums. 
Also, respective of the Forest-base Map, the forest stratums sampled and analysed included the 
three major stratums which are low-altitude forest on uplands, low-altitude forest on plains and 
fans and woodland (refer to Figure 2). 
Spectral indices derived from Red Edge band were generated on an explorative basis and 
incorporated as added variables to test for significance of correlation with AGB and C. It was 
discovered by Pearson’s correlation that (i) the added variables of Red Edge-derived spectral 
indices had overall high significance when correlated with AGB and C, (ii) Red Edge-derived 
spectral indices also evinced better correlations with 2014 ground estimates of AGB and C when 
normal Red-derived spectral indices had few significant correlations or even failed to correlate at 
all and (iii) all significant spectral variables had stronger correlations with AGB and C in PF than 
in SF. Evaluating the significant spectral parameters presented in Table 3, Red Edge derived 
spectral indices were very helpful and had momentous confidence levels and strong correlation 
with AGB and C overall and were very pertinent variables in 2014.  
Spatial OLS regression models were developed on a stratum-specific premise to estimate AGB 
and C of PF and SF and then integrated to produce a spatially resolved model-fit composite for 
each temporal landscape. The model-fit essentially shows the relationship between the estimated 
and measured C stocks for the entire sample in each temporal estimate (Figure 3). The idea of 
model-fitting in this study does not necessarily signify that the fitting will develop an integrated 
model for AGB and C estimation across the study area for both PF and SF because individual 
model performance will vary causing unreliable estimation unless multiple variables are used to 
develop the model as shown in Wijaya et al. (2010) or Eckert (2012); thus, there were no spatial 
statistics for the model-fits. It, however, focuses on validating the fitting process in the spatial 
domain where modeled outputs from each stratum-specific model recombined by an intersecting 
overlay process to produce a single integrated composite that still retains the individual model 
performance of each stratum-specific model. Resultantly, this single integrated composite is the 
spatially resolved C stock map for each temporal estimate that provides a measure of these 
modeled estimates and the unestimated category as well. Moreover, the lowest measurement of 
the C stock maps were zero indicating non-forest areas with exposed soil whereas according to 
spectral vegetation indices the lowest values are negative values indicating water bodies and the 
exemplified water bodies in these modeled spectral indices outputs are the two small rivers 
depicted in the maps in Figure 3. 
Adjusted R2 values of both model-fits for the temporal estimates were attuned to satisfiable 
values which are 0.696 for 2010 and 0.606 for 2014 (Table 4). The reason for averaging the 
adjusted R2 values of the stratum-specific models in each temporal estimate to come up with the 
adjusted R2 values for the model-fits was because the spatial integration of the stratum-specific 
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modeled outputs as elucidated enabled individual models within the integrated composite to 
maintain independent significant relationships with C stocks. As a result, the mean adjusted R2 
for the model-fits are relevantly suitable for both model complexities across each temporal 
landscape explaining respective variations in C stocks. VR (variance ratio) is expressed 
according to Powel et al. (2010) as the standard deviation of the measured (observed) C divided 
by the standard deviation of the modeled (estimated) C. All VRs calculated in this study (Table 
4) to assess model performance and significance of stratum-specific models and model-fits in 
terms of C stock variance were relevant when compared with values obtained in Powel et al. 
(2010). Most importantly, the corresponding attuned RMSEs and relative RMSEs of the model-
fits evinced values that suited both stratum-specific models in each temporal landscape which 
directly implied a validation of the fitting. Overall RMSEs for all models in both temporal 
estimates were reasonably low with values < 9MgC ha-1(8.02MgC ha-1) and < 29MgC ha-

1(28.31MgC ha-1). The C relative RMSE of each stratum-specific model in each temporal 
estimate were relevantly low except for the PF model in 2014 which had a C relative RMSE> 
20% (21.13%). 
With reference to model estimation, 2010 models had high confidence levels (p< 0.01) so their 
performances were complacent in terms of over- and underestimations while 2014 models had at 
least reasonable over- and underestimations according to their sound confidence levels (p< 0.05). 
Mean measured estimate with standard deviations of both stratums in 2009 was 
111.4531±27.968MgC ha-1 and mean modeled (2010) estimate was 111.4529±27.113MgC ha-

1owed to the 99% (p< 0.01) confidence intervals of both models and individual model 
performances. Those for 2014 were 102.9857±53.897MgC ha-1(measured) and 
102.9857±851MgC ha-1(modeled) also having much influence from individual model 
performances and the respective 95% (p< 0.05) confidence intervals for both stratum-specific 
models. To note, the estimated AGB and C for SF in this study may not be representative of the 
disturbed SF across PNG because such forests have undergone intensive selective-logging where 
larger trees with DBH > 50cm have been removed for timber. C stock variation and saturation in 
each temporal C stock map reflected the modeled capture of each preeminent spectral index and 
the C stock maps also depicted how certain forest disturbances affected the C content across each 
temporal landscape.  
Concerning critical issues, although the sample sizes of measured AGB and C were critically 
small, the notion of stratum-specific modeling and subsequent model-fitting provided 
convenience for reliable estimation with such small samples. Unlike Eckert’s (2012) study where 
bootstrapping was used to increase sample sizes (n) for stratum-specific modeling, the approach 
here is directly stratum-specific in which the limited samples were separated into PF and SF 
accordingly and appreciably correlations were quite high (see Table 3) despite the small sample 
sizes. On a spatial platform in remote sensing context, stratum-specific models will have certain 
redundancies since a generic satellite image captures a combined variation of different forest 
stratums which appear homogeneous. Therefore, defining broad forest stratums before stratum-
specific modeling was a critical consideration in this study and model-fitting in terms of 
overlaying stratum-specific modeled outputs was the key solution to this drawback of remote 
sensing redundancies. Moreover, the output model-fitted composites were the results of spatial 
overlaying with the allowance of temporal landscape intersection that drastically minimizes these 
redundancies while enhancing the spatial distribution of C estimates. 
Since, Joint F-Statistic and Joint Wald Statistic showed high spatial statistical significance with 
relevant confidence levels (p< 0.05 and p< 0.001 respectively); the Jarque-Bera statistic was 
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used to assess model bias in terms of skewness for each developed model assuming that their 
residuals were not normally distributed. A significant Jarque-Bera p-value of < 0.05 or 95% 
confidence interval indicates that the model is biased therefore, reporting with direct reference to 
the order of the stratum-specific models given in Table 4 (excluding model-fits), Jarque-Bera p-
values were 0.842, 0.932, 0.713 and 0.459, assuming random distribution of the model residuals. 
An added spatial statistical evaluation of model residuals involved the processing of the stratum-
specific regression models using Spatial Autocorrelation via Global Moran’s Index with the 
same assumption as that of Jarque-Bera statistic except that in this evaluation, model residuals 
were assessed for ‘spatially’ random distribution. Following the order of Jarque-Bera p-values 
for stratum-specific models, Spatial Autocorrelation p-values were 0.324, 0.105, 0.630 and 
0.413, signifying that the residuals of the stratum-specific regression models are spatially 
random. 
Finally, the concept of stratum-specific modeling presented here can be verified by application in 
further studies at regional (provincial) and national levels conveniently using PSP data on 
medium to moderate resolution satellite data such as Landsat 7 ETM+ data and MODIS 
(Moderate resolution Imaging Spectroradiometer) data respectively. 

 

5. Conclusion 

Interesting relationships were discovered in the process of integrating ground estimates of AGB 
and C with the RapidEye data by studying these relationships via Pearson’s correlation and 
developing appropriate models through the spatial OLS regression analysis. Generally assessing 
confidence levels (p-levels), through correlation significance and statistical variable significance, 
Red Edge-derived spectral indices showed robust performances and truly acted as an added 
(enhanced) set of variables to cater for failed correlations of AGB and C with indices usually 
derived from Red band. This therefore, confirmed acceptance of the hypothesis of the Red Edge 
band posed earlier in this paper. High confidence levels in both temporal estimates at 99% and 
95% confidence levels for 2010 and 2014 respectively with significant model complexity 
measures(adjusted R2) and low RMSEs and relative RMSEs were statistical proofs that the 
stratum-specific models developed are reliable in estimating AGB and C. Furthermore, the 
notion of model-fitting relevantly showed the combined importance of the stratum-specific 
models for each temporal estimate exposing all sample plots graphically and importantly, 
validating the integration of these models in the spatial domain with significantly attuned 
RMSEs and relative RMSEs. Consequently, spatial level estimation via the intersecting overlay 
process is now a reliable approach of producing spatially distributed estimates for the entire 
landscape studied. This also proves acceptance of the idea hypothesized for this strategy of 
model-fitting. Finally, from deductive reasoning of the results obtained in this study with 
reflection to forest C stocks from the overall measured low-altitude tree species including those 
common in the PSPs across PNG and also having comparable ground estimates with previous 
national level studies namely, Fox et al. (2010 and 2011a) and Yosi (2011), the concept of 
stratum-specific modeling presented here can be significantly tested or applied in other low-
altitude forest landscapes in PNG with high resolution optical satellite data for AGB and C 
estimation at spatial levels for REDD+ implementations. 
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